MECÂNICA GRACELI GENERALIZADA multidimensional - relativista indeterminada
dentro da sua mecânica e com o operador de GRACELI ¨* ¨se tem a indeterminalidade quântica generalizada de Graceli
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
DE ANCELMO LUIZ GRACELI [BRASILEIRO].
FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / G = [DR] = .= + + * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.
*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO, ENTROPIA, VIBRAÇÕES. E OUTROS.
LEVANDO E UM SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.
* *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
CONFORME A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE HOJE, E QUE FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.
* .=
* ψ .=
- [ G* /. ] [ [
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ []
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
= temperatura.
[ ) [,] / ] / [ ] .=
O magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:
onde:
- é a carga elementar,
- é a constante de Planck reduzida,
- é a massa em repouso do elétron
No sistema internacional de unidades se valor é aproximadamente:
No sistema CGS de unidades seu valor é aproximadamente:
- = 9,274 008 99(37)·10-21 erg·G-1
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- [ ]
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Descrição matemática
Partícula livre clássica
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
e a energia cinética, que é igual à energia total, é dada por
onde m é a massa da partícula e v é o vetor velocidade da partícula.
Partícula livre quântica
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
(da mesma forma para as direções y e z) e as relações De Broglie:[1]:
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas
Comentários
Postar um comentário